Relative Efficiency (RE)

Question 1. Grizzle (1982) describes Relative Efficiency (RE) as the relative change in variance when using stratification versus simple randomisation. Researchers may consider a threshold where the RE gets low enough that stratified randomisation is imperative (as the variance associated with the parameter of interest gets too large with simple randomisation). Consider the same analysis as proposed in Grizzle (1982) but where the prognostic factor is sex with a population prevalence of 0.5 (i.e. using the dichotomy X=1 if a patient is female, 0 otherwise). (a) In this scenario given, what does the RE tell us about randomisation?  (b) You believe it’s plausible that for a trial with sample size n = 20 with equal sized treatment groups to have an imbalance where there are 6 females in one treatment arm and 3 females in the other treatment arm. What is the relative efficiency in this scenario?  (c) You decide to prepare for a scenario where the balance is worse than that in (b) and where g = 1 ? h, with n1 = n2 = 10. What is the minimum value for g such that the relative efficiency remains above 0.8?  (d) You are later told that a much larger study is needed and the allocation ratio of treatment 1 to treatment 2 must be 2:1. What is the RE for n = n1 + n2 = 60, g = 0.4 and h = 0.6?  (e) For the scenario in (d), would you recommend the use of stratified or simple randomisation?

We help you get better grades, improve your productivity and get more fun out of college!!

Get 25% Discount on Your First Order

Day(s)

:

Hour(s)

:

Minute(s)

:

Second(s)

How it works – it’s easy

Y

Place your Order

Submit your requirements through our small easy order form. Be sure to include and attach any relevant materials.

Make a payment

The total price of your order is based on number of pages, academic level and deadline.

i

Writing process

We assign the assignment to the most qualified tutor. When the tutor completes the assignment, it is transferred to one of our professional editors to make sure that the assignment meets all of your requirements.

Once complete, we’ll send your assignment via the email provided on the order form.

 

 

Achieve academic success with the best online tutors.